ECoG Movement decoding example#

This example notebook read openly accessible data from the publication Electrocorticography is superior to subthalamic local field potentials for movement decoding in Parkinson’s disease (Merk et al. 2022 <https://elifesciences.org/articles/75126>_). The dataset is available here.

For simplicity one example subject is automatically shipped within this repo at the py_neuromodulation/data folder, stored in iEEG BIDS format.

from sklearn import metrics, model_selection, linear_model
import matplotlib.pyplot as plt

import py_neuromodulation as nm

Let’s read the example using mne_bids. The resulting raw object is of type mne.RawArray. We can use the properties such as sampling frequency, channel names, channel types all from the mne array and create the nm_channels DataFrame:

(
    RUN_NAME,
    PATH_RUN,
    PATH_BIDS,
    PATH_OUT,
    datatype,
) = nm.io.get_paths_example_data()

(
    raw,
    data,
    sfreq,
    line_noise,
    coord_list,
    coord_names,
) = nm.io.read_BIDS_data(PATH_RUN=PATH_RUN)

channels = nm.utils.set_channels(
    ch_names=raw.ch_names,
    ch_types=raw.get_channel_types(),
    reference="default",
    bads=raw.info["bads"],
    new_names="default",
    used_types=("ecog", "dbs", "seeg"),
    target_keywords=["MOV_RIGHT"],
)
Extracting parameters from /opt/hostedtoolcache/Python/3.11.11/x64/lib/python3.11/site-packages/py_neuromodulation/data/sub-testsub/ses-EphysMedOff/ieeg/sub-testsub_ses-EphysMedOff_task-gripforce_run-0_ieeg.vhdr...
Setting channel info structure...
/opt/hostedtoolcache/Python/3.11.11/x64/lib/python3.11/site-packages/py_neuromodulation/utils/io.py:61: RuntimeWarning: Did not find any events.tsv associated with sub-testsub_ses-EphysMedOff_task-gripforce_run-0.

The search_str was "/opt/hostedtoolcache/Python/3.11.11/x64/lib/python3.11/site-packages/py_neuromodulation/data/sub-testsub/**/ieeg/sub-testsub_ses-EphysMedOff*events.tsv"
  raw_arr = read_raw_bids(bids_path)
Reading channel info from /opt/hostedtoolcache/Python/3.11.11/x64/lib/python3.11/site-packages/py_neuromodulation/data/sub-testsub/ses-EphysMedOff/ieeg/sub-testsub_ses-EphysMedOff_task-gripforce_run-0_channels.tsv.
/opt/hostedtoolcache/Python/3.11.11/x64/lib/python3.11/site-packages/py_neuromodulation/utils/io.py:61: RuntimeWarning: Other is not an MNE-Python coordinate frame for IEEG data and so will be set to 'unknown'
  raw_arr = read_raw_bids(bids_path)
Reading electrode coords from /opt/hostedtoolcache/Python/3.11.11/x64/lib/python3.11/site-packages/py_neuromodulation/data/sub-testsub/ses-EphysMedOff/ieeg/sub-testsub_ses-EphysMedOff_space-mni_electrodes.tsv.
/opt/hostedtoolcache/Python/3.11.11/x64/lib/python3.11/site-packages/py_neuromodulation/utils/io.py:61: RuntimeWarning: There are channels without locations (n/a) that are not marked as bad: ['MOV_RIGHT']
  raw_arr = read_raw_bids(bids_path)
/opt/hostedtoolcache/Python/3.11.11/x64/lib/python3.11/site-packages/py_neuromodulation/utils/io.py:61: RuntimeWarning: Not setting position of 1 misc channel found in montage:
['MOV_RIGHT']
Consider setting the channel types to be of EEG/sEEG/ECoG/DBS/fNIRS using inst.set_channel_types before calling inst.set_montage, or omit these channels when creating your montage.
  raw_arr = read_raw_bids(bids_path)

This example contains the grip force movement traces, we’ll use the MOV_RIGHT channel as a decoding target channel. Let’s check some of the raw feature and time series traces:

plt.figure(figsize=(12, 4), dpi=300)
plt.subplot(121)
plt.plot(raw.times, data[-1, :])
plt.xlabel("Time [s]")
plt.ylabel("a.u.")
plt.title("Movement label")
plt.xlim(0, 20)

plt.subplot(122)
for idx, ch_name in enumerate(channels.query("used == 1").name):
    plt.plot(raw.times, data[idx, :] + idx * 300, label=ch_name)
plt.legend(bbox_to_anchor=(1, 0.5), loc="center left")
plt.title("ECoG + STN-LFP time series")
plt.xlabel("Time [s]")
plt.ylabel("Voltage a.u.")
plt.xlim(0, 20)
Movement label, ECoG + STN-LFP time series
(0.0, 20.0)
settings = nm.NMSettings.get_fast_compute()

settings.features.welch = True
settings.features.fft = True
settings.features.bursts = True
settings.features.sharpwave_analysis = True
settings.features.coherence = True

settings.coherence_settings.channels = [["LFP_RIGHT_0", "ECOG_RIGHT_0"]]

settings.coherence_settings.frequency_bands = ["high beta", ]
settings.sharpwave_analysis_settings.estimator["mean"] = []
settings.sharpwave_analysis_settings.sharpwave_features.enable_all()
for sw_feature in settings.sharpwave_analysis_settings.sharpwave_features.list_all():
    settings.sharpwave_analysis_settings.estimator["mean"].append(sw_feature)
stream = nm.Stream(
    sfreq=sfreq,
    channels=channels,
    settings=settings,
    line_noise=line_noise,
    coord_list=coord_list,
    coord_names=coord_names,
    verbose=True,
)
features = stream.run(
    data=data,
    out_dir=PATH_OUT,
    experiment_name=RUN_NAME,
    save_csv=True,
)

Feature Analysis Movement#

The obtained performances can now be read and visualized using the analysis.Feature_Reader.

# initialize analyzer
feature_reader = nm.analysis.FeatureReader(
    feature_dir=PATH_OUT,
    feature_file=RUN_NAME,
)
feature_reader.label_name = "MOV_RIGHT"
feature_reader.label = feature_reader.feature_arr["MOV_RIGHT"]
ECOG_RIGHT_5_avgref_bursts_high_beta_amplitude_mean ECOG_RIGHT_5_avgref_bursts_high_beta_amplitude_max ECOG_RIGHT_5_avgref_bursts_high_beta_burst_rate_per_s ECOG_RIGHT_5_avgref_bursts_high_beta_in_burst time MOV_RIGHT
100 -0.086002 -0.628598 0.516769 -0.433861 11000.0 -0.150107
101 -0.169562 -0.622105 0.877054 -0.431331 11100.0 -0.280238
102 0.065565 -0.238945 1.809531 -0.428845 11200.0 -0.305062
103 -0.120981 0.268803 3.000000 2.262222 11300.0 -0.312851
104 0.240896 0.442484 2.802783 -0.439525 11400.0 -0.305154
105 0.112072 0.426814 2.048669 -0.437048 11500.0 -0.305200
106 0.256308 0.418299 1.467012 -0.434613 11600.0 -0.311440
107 0.150665 0.415204 0.802955 -0.432219 11700.0 -0.306840


(181, 458)
feature_reader._get_target_ch()
'MOV_RIGHT'
feature_reader.plot_target_averaged_channel(
    ch="ECOG_RIGHT_0",
    list_feature_keywords=None,
    epoch_len=4,
    threshold=0.5,
    ytick_labelsize=7,
    figsize_x=12,
    figsize_y=12,
)
Movement aligned features channel: ECOG_RIGHT_0, MOV_RIGHT
feature_reader.plot_all_features(
    ytick_labelsize=6,
    clim_low=-2,
    clim_high=2,
    ch_used="ECOG_RIGHT_0",
    time_limit_low_s=0,
    time_limit_high_s=20,
    normalize=True,
    save=True,
)
Feature Plot sub-testsub_ses-EphysMedOff_task-gripforce_run-0
nm.analysis.plot_corr_matrix(
    feature=feature_reader.feature_arr.filter(regex="ECOG_RIGHT_0"),
    ch_name="ECOG_RIGHT_0_avgref",
    feature_names=list(
        feature_reader.feature_arr.filter(regex="ECOG_RIGHT_0_avgref").columns
    ),
    feature_file=feature_reader.feature_file,
    show_plot=True,
    figsize=(15, 15),
)
Correlation matrix features channel: ECOG_RIGHT_0_avgref
<Axes: title={'center': 'Correlation matrix features channel: ECOG_RIGHT_0_avgref'}>

Decoding#

The main focus of the py_neuromodulation pipeline is feature estimation. Nevertheless, the user can also use the pipeline for machine learning decoding. It can be used for regression and classification problems and also dimensionality reduction such as PCA and CCA.

Here, we show an example using a sklearn linear regression model. The used labels came from a continuous grip force movement target, named “MOV_RIGHT”.

First we initialize the Decoder class, which the specified validation method, here being a simple 3-fold cross validation, the evaluation metric, used machine learning model, and the channels we want to evaluate performances for.

There are many more implemented methods, but we will here limit it to the ones presented.

model = linear_model.LinearRegression()

feature_reader.decoder = nm.analysis.Decoder(
    features=feature_reader.feature_arr,
    label=feature_reader.label,
    label_name=feature_reader.label_name,
    used_chs=feature_reader.used_chs,
    model=model,
    eval_method=metrics.r2_score,
    cv_method=model_selection.KFold(n_splits=3, shuffle=True),
)
performances = feature_reader.run_ML_model(
    estimate_channels=True,
    estimate_gridpoints=False,
    estimate_all_channels_combined=True,
    save_results=True,
)

The performances are a dictionary that can be transformed into a DataFrame:

df_per = feature_reader.get_dataframe_performances(performances)

df_per
performance_test performance_train sub ch ch_type
0 0.196433 0.791052 testsub LFP_RIGHT_0_LFP_RIGHT_2 electrode ch
1 0.072972 0.573566 testsub LFP_RIGHT_1_LFP_RIGHT_0 electrode ch
2 0.000000 0.535413 testsub LFP_RIGHT_2_LFP_RIGHT_1 electrode ch
3 0.079832 0.686757 testsub ECOG_RIGHT_0_avgref electrode ch
4 0.133881 0.694077 testsub ECOG_RIGHT_1_avgref electrode ch
5 0.000000 0.736837 testsub ECOG_RIGHT_2_avgref electrode ch
6 0.112338 0.699651 testsub ECOG_RIGHT_3_avgref electrode ch
7 0.077776 0.680231 testsub ECOG_RIGHT_4_avgref electrode ch
8 0.033011 0.663797 testsub ECOG_RIGHT_5_avgref electrode ch
9 0.192609 1.000000 testsub all_ch_combined all ch combinded


ax = nm.analysis.plot_df_subjects(
    df_per,
    x_col="sub",
    y_col="performance_test",
    hue="ch_type",
    PATH_SAVE=PATH_OUT / RUN_NAME / (RUN_NAME + "_decoding_performance.png"),
    figsize_tuple=(8, 5),
)
ax.set_ylabel(r"$R^2$ Correlation")
ax.set_xlabel("Subject 000")
ax.set_title("Performance comparison Movement decoding")
plt.tight_layout()
Performance comparison Movement decoding

Total running time of the script: (0 minutes 8.527 seconds)

Gallery generated by Sphinx-Gallery