stats#
- analysis.stats.cluster_wise_p_val_correction(p_arr, p_sig=0.05, num_permutations=10000)[source]#
Obtain cluster-wise corrected p values.
Based on: neuromodulation/wjn_toolbox https://garstats.wordpress.com/2018/09/06/cluster/
- Parameters:
(np.array) (p_arr)
(float) (p_sig)
(int) (num_permutations)
- Returns:
p (float) (significance level of highest cluster)
p_min_index (indices of significant samples)
- analysis.stats.cluster_wise_p_val_correction_numba(p_arr, p_sig, n_perm)[source]#
Calculate significant clusters and their corresponding p-values.
Based on: neuromodulation/wjn_toolbox https://garstats.wordpress.com/2018/09/06/cluster/
- Parameters:
- Returns:
p (list of floats) – List of p-values for each cluster
p_min_index (list of numpy array) – List of indices of each significant cluster
- analysis.stats.permutationTest(x, y, plot_distr=True, x_unit=None, p=5000)[source]#
Calculate permutation test https://towardsdatascience.com/how-to-assess-statistical-significance-in-your-data-with-permutation-tests-8bb925b2113d
x (np array) : first distr. y (np array) : first distr. plot_distr (boolean) : if True: plot permutation histplot and ground truth x_unit (str) : histplot xlabel p (int): number of permutations
returns: gT (float) : estimated ground truth, here absolute difference of distribution means p (float) : p value of permutation test
- analysis.stats.permutationTestSpearmansRho(x, y, plot_distr=True, x_unit=None, p=5000)[source]#
Calculate permutation test for multiple repetitions of Spearmans Rho https://towardsdatascience.com/how-to-assess-statistical-significance-in-your-data-with-permutation-tests-8bb925b2113d
x (np array) : first distibution e.g. R^2 y (np array) : second distribution e.g. UPDRS plot_distr (boolean) : if True: permutation histplot and ground truth will be plotted x_unit (str) : histplot xlabel p (int): number of permutations
returns: gT (float) : estimated ground truth, here spearman’s rho p (float) : p value of permutation test
- analysis.stats.permutationTest_relative(x, y, plot_distr=True, x_unit=None, p=5000)[source]#
Calculate permutation test https://towardsdatascience.com/how-to-assess-statistical-significance-in-your-data-with-permutation-tests-8bb925b2113d
x (np array) : first distr. y (np array) : first distr. plot_distr (boolean) : if True: plot permutation histplot and ground truth x_unit (str) : histplot xlabel p (int): number of permutations
returns: gT (float) : estimated ground truth, here absolute difference of distribution means p (float) : p value of permutation test
- analysis.stats.permutation_numba_onesample(x, y, n_perm, two_tailed=True)[source]#
Perform permutation test with one-sample distribution.
- Parameters:
x (array_like) – First distribution
y (int or float) – Baseline against which to check for statistical significane
n_perm (int) – Number of permutations
two_tailed (bool, default: True) – Set to False if you would like to perform a one-sampled permutation test, else True
two_tailed – Set to False if you would like to perform a one-tailed permutation test, else True
- Returns:
float – Estimated difference of distribution from baseline
float – P-value of permutation test
- analysis.stats.permutation_numba_twosample(x, y, n_perm, two_tailed=True)[source]#
Perform permutation test.
- Parameters:
x (array_like) – First distribution
y (array_like) – Second distribution
n_perm (int) – Number of permutations
two_tailed (bool, default: True) – Set to False if you would like to perform a one-sampled permutation test, else True
two_tailed – Set to False if you would like to perform a one-tailed permutation test, else True
- Returns:
float – Estimated difference of distribution means
float – P-value of permutation test