from os import PathLike
from math import isnan
from typing import Literal, TYPE_CHECKING, Any
from pydantic import BaseModel, model_validator, Field
from .pydantic_extensions import NMBaseModel, NMField
from abc import abstractmethod
from collections.abc import Sequence
from datetime import datetime
if TYPE_CHECKING:
import numpy as np
from py_neuromodulation import NMSettings
###################################
########## TYPE ALIASES ##########
###################################
_PathLike = str | PathLike
FEATURE_NAME = Literal[
"raw_hjorth",
"return_raw",
"bandpass_filter",
"stft",
"fft",
"welch",
"sharpwave_analysis",
"fooof",
"nolds",
"coherence",
"bursts",
"linelength",
"mne_connectivity",
"bispectrum",
]
PREPROCESSOR_NAME = Literal[
"preprocessing_filter",
"notch_filter",
"raw_resampling",
"re_referencing",
"raw_normalization",
]
NORM_METHOD = Literal[
"mean",
"median",
"zscore",
"zscore-median",
"quantile",
"power",
"robust",
"minmax",
]
class NMFeature:
def __init__(
self, settings: "NMSettings", ch_names: Sequence[str], sfreq: int | float
) -> None: ...
def calc_feature(self, data: "np.ndarray") -> dict:
"""
Feature calculation method. Each method needs to loop through all channels
Parameters
----------
data : 'np.ndarray'
(channels, time)
Returns
-------
dict
"""
...
class NMPreprocessor:
def process(self, data: "np.ndarray") -> "np.ndarray": ...
[docs]
class FrequencyRange(NMBaseModel):
frequency_low_hz: float = Field(gt=0)
frequency_high_hz: float = Field(gt=0)
def __init__(self, *args, **kwargs) -> None:
super().__init__(*args, **kwargs)
def __getitem__(self, item: int):
match item:
case 0:
return self.frequency_low_hz
case 1:
return self.frequency_high_hz
case _:
raise IndexError(f"Index {item} out of range")
def as_tuple(self) -> tuple[float, float]:
return (self.frequency_low_hz, self.frequency_high_hz)
def __iter__(self): # type: ignore
return iter(self.as_tuple())
@model_validator(mode="after")
def validate_range(self):
if not (isnan(self.frequency_high_hz) or isnan(self.frequency_low_hz)):
assert self.frequency_high_hz > self.frequency_low_hz, (
"Frequency high must be greater than frequency low"
)
return self
[docs]
class BoolSelector(NMBaseModel):
def get_enabled(self):
return [
f
for f in self.model_fields.keys()
if (isinstance(self[f], bool) and self[f])
]
def enable_all(self):
for f in self.model_fields.keys():
if isinstance(self[f], bool):
self[f] = True
def disable_all(self):
for f in self.model_fields.keys():
if isinstance(self[f], bool):
self[f] = False
def __iter__(self): # type: ignore
return iter(self.model_dump().keys())
@classmethod
def list_all(cls):
return list(cls.model_fields.keys())
@classmethod
def print_all(cls):
for f in cls.list_all():
print(f)
#################
### GUI TYPES ###
#################
[docs]
class FileInfo(BaseModel):
name: str
path: str
dir: str
is_directory: bool
size: int
created_at: datetime
modified_at: datetime