Source code for utils.types

from os import PathLike
from math import isnan
from typing import Literal, TYPE_CHECKING, Any
from pydantic import BaseModel, model_validator, Field
from .pydantic_extensions import NMBaseModel, NMField
from abc import abstractmethod

from collections.abc import Sequence
from datetime import datetime


if TYPE_CHECKING:
    import numpy as np
    from py_neuromodulation import NMSettings

###################################
########## TYPE ALIASES  ##########
###################################

_PathLike = str | PathLike

FEATURE_NAME = Literal[
    "raw_hjorth",
    "return_raw",
    "bandpass_filter",
    "stft",
    "fft",
    "welch",
    "sharpwave_analysis",
    "fooof",
    "nolds",
    "coherence",
    "bursts",
    "linelength",
    "mne_connectivity",
    "bispectrum",
]

PREPROCESSOR_NAME = Literal[
    "preprocessing_filter",
    "notch_filter",
    "raw_resampling",
    "re_referencing",
    "raw_normalization",
]

NORM_METHOD = Literal[
    "mean",
    "median",
    "zscore",
    "zscore-median",
    "quantile",
    "power",
    "robust",
    "minmax",
]


class NMFeature:
    def __init__(
        self, settings: "NMSettings", ch_names: Sequence[str], sfreq: int | float
    ) -> None: ...

    def calc_feature(self, data: "np.ndarray") -> dict:
        """
        Feature calculation method. Each method needs to loop through all channels

        Parameters
        ----------
        data : 'np.ndarray'
            (channels, time)

        Returns
        -------
        dict
        """
        ...


class NMPreprocessor:
    def process(self, data: "np.ndarray") -> "np.ndarray": ...


[docs] class FrequencyRange(NMBaseModel): frequency_low_hz: float = Field(gt=0) frequency_high_hz: float = Field(gt=0) def __init__(self, *args, **kwargs) -> None: super().__init__(*args, **kwargs) def __getitem__(self, item: int): match item: case 0: return self.frequency_low_hz case 1: return self.frequency_high_hz case _: raise IndexError(f"Index {item} out of range") def as_tuple(self) -> tuple[float, float]: return (self.frequency_low_hz, self.frequency_high_hz) def __iter__(self): # type: ignore return iter(self.as_tuple()) @model_validator(mode="after") def validate_range(self): if not (isnan(self.frequency_high_hz) or isnan(self.frequency_low_hz)): assert self.frequency_high_hz > self.frequency_low_hz, ( "Frequency high must be greater than frequency low" ) return self
[docs] @model_validator(mode="before") @classmethod def check_input(cls, input): """Pydantic validator to convert the input to a dictionary when passed as a list as we have it by default in the default_settings.yaml file For example, [1,2] will be converted to {"frequency_low_hz": 1, "frequency_high_hz": 2} """ match input: case dict() if "frequency_low_hz" in input and "frequency_high_hz" in input: return input case Sequence() if len(input) == 2: return {"frequency_low_hz": input[0], "frequency_high_hz": input[1]} case _: raise ValueError( "Value for FrequencyRange must be a dictionary, " "or a sequence of 2 numeric values, " f"but got {input} instead." )
[docs] class BoolSelector(NMBaseModel): def get_enabled(self): return [ f for f in self.model_fields.keys() if (isinstance(self[f], bool) and self[f]) ] def enable_all(self): for f in self.model_fields.keys(): if isinstance(self[f], bool): self[f] = True def disable_all(self): for f in self.model_fields.keys(): if isinstance(self[f], bool): self[f] = False def __iter__(self): # type: ignore return iter(self.model_dump().keys()) @classmethod def list_all(cls): return list(cls.model_fields.keys()) @classmethod def print_all(cls): for f in cls.list_all(): print(f)
################# ### GUI TYPES ### #################
[docs] class FileInfo(BaseModel): name: str path: str dir: str is_directory: bool size: int created_at: datetime modified_at: datetime